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Abstract

Robustness of deep neural networks (DNNs) to malicious
perturbations is a hot topic in trustworthy AI. Existing tech-
niques obtain robust models given fixed datasets, either by
modifying model structures, or by optimizing the process of
inference or training. While significant improvements have
been made, the possibility of constructing a high-quality
dataset for model robustness remain unexplored. Follow the
campaign of data-centric AI launched by Andrew Ng, we pro-
pose a novel algorithm for dataset enhancement that works
well for many existing DNN models to improve robustness.
Transferable adversarial examples and 14 kinds of common
corruptions are included in our optimized dataset. In the data-
centric robust learning competition hosted by Alibaba Group
and Tsinghua University, our algorithm came third out of
more than 3000 competitors in the first stage while we ranked
fourth in the second stage.

1. Introduction
Deep learning has set off a revolution in artificial intelli-
gence research and has made remarkable achievements in
many fields such as medical diagnosis, autonomous driving,
large-scale decision making, etc. However, it’s been proved
that DNNs are vulnerable to adversarial examples (Szegedy
et al. 2013), which are clean samples with imperceptible per-
turbations that cause a model to make mistakes, posing a
serious threat to AI security. For adversarial defense, exist-
ing work either modify the model structures themselves, or
optimize the process of inference or training, among which
adversarial training (Madry et al. 2017; Zhang et al. 2019)
proves to be the most effective strategy.

Some works point out that DNNs are also susceptible to
common corruptions that widely exist in real-world applica-
tion scenarios (Zhang et al. 2020; Hendrycks and Dietterich
2019). These corruptions stem from geometric variations of
cameras caused by rotation and translation, or some environ-
mental factors like rain, snow, noises, etc. The techniques
towards robustness to common corruptions are mainly focus
on data augmentation (Hendrycks et al. 2020) and auxiliary
training (Zheng et al. 2016; Zhang et al. 2020).
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Numerous works have tried to improve robustness of
DNN models. However, none of them considered engineer-
ing the original dataset to make it more suitable for train-
ing robust models, leaving the potential of datasets unex-
plored. The encouraging result of data-centric AI competi-
tion launched by Andrew Ng (url) tells us that it’s time to
move from model-centric approach to data-centric approach
and design reliable, effective, systematic data to furthur
stimulate the potential of deep learning.

In this paper, we propose a data-centric algorithm for
dataset enhancement to train robust models. Based on the
following two conclusions: 1) a DNN model achieves opti-
mal performance when its testing set follow the same data
distribution as its training set; 2) maliciously perturbed data
and benign data come from different distributions (Song
et al. 2017; Samangouei, Kabkab, and Chellappa 2018), we
believe that the optimized training set should also contain
adversarial examples and corrupted samples drawn from the
corresponding distribution. Therefore, the basic framework
of our algorithm is quit simple — we add adversarial per-
turbations and common corruptions to some randomly se-
lected samples in the original training set. We make use of
transferable adversarial examples and as many as 14 kinds
of corruptions to further improve the effectiveness. Note that
this is different from the techniques exploring extra data
which usually result in larger datasets, we keep the number
of training samples unchanged. Our algorithm is proposed
for participating in the data-centric robust learning competi-
tion hosted by Alibaba Group and Tsinghua University (url),
in which we beat over 3,000 participants and won the 3rd
and 4th place in stage one and stage two respectively. In
summary, our main contributions are as follows:

• We propose a simple but effective algorithm to improve
deep model’s robustness from the perspective of data.
This brand new and promising data-centric view largely
enrich the research community.

• We study the robustness of DNN models in a challenging
but practical setting — adversarial examples and com-
mon corruptions both exist in the testing phase while
most of the previous work consider them separately.

• The competition and experimental results demonstrated
the effectiveness of our algorithm, indicating that the
data-centric strategy is feasible for model robustness.

https://https-deeplearning-ai.github.io/data-centric-comp/
https://tianchi.aliyun.com/competition/entrance/531939/introduction


2. Related Works
Model Robustness
Robustness of DNNs to the perturbations on model inputs is
of great concern in trustworthy AI. There are two kinds of
perturbations studied in the literature, one is adversarial per-
turbation (Szegedy et al. 2013) which is a small perturbation
that can drastically change the network output while being
quasi-imperceptible to humans, and another is common cor-
ruption such as rain, snow, Gaussian noise, etc.

The research community has made great efforts to im-
prove model robustness. To defense against adversarial ex-
amples, one of the most effective strategies is adversarial
training — train a model in an adversarial fashion that con-
tinuously generating adversarial examples and then mini-
mizing the loss on these samples (Madry et al. 2017; Zhang
et al. 2019). In addition, There are also some works that pur-
sue robust model structures by leveraging ensemble strate-
gies (Lu et al. 2021), NAS (Hosseini, Yang, and Xie 2021),
or some well-designed modules for denoising (Xie et al.
2019a), purifying (Shi, Holtz, and Mishne 2020), and ma-
licious sample rejection (Cohen, Sapiro, and Giryes 2020).
For common corruptions, existing works mainly focus on
optimizing the learning strategies (Hendrycks et al. 2019;
Zheng et al. 2016) or data augmentation (DeVries and Tay-
lor 2017). Note that data augmentation can be seen as a data-
centric algorithm, but it often result in a larger training set
while our algorithm does not.

The above strategies, while effective, are based on fixed
datasets or extra training samples. From a complementary
perspective, in this work, we show that it’s possible to effec-
tively improve model robustness simply by improving exist-
ing datasets while without increasing the amount of data.

Data-Centric AI
Data-centric AI stems from a competition launched by An-
drew Ng (url). Different from previous competitions that
pursue high-performance models with fixed dataset, this
competition fix the models and pursue a high-quality dataset
by fixing incorrect labels, applying data augmentations, etc.
In this work, we follow a stricter requirement — improve a
dataset without increasing the number of samples. For model
robustness, previous work focus almost exclusively on mod-
els, and now it’s the time to exploit the potential of datasets.

3. Proposed Method
In this section, we present our data-centric algorithm for
model robustness. We first formalize our optimization goal.

Problem Formulation
Given a training set D = {(x1, y1), · · · , (xn, yn)} con-
sisting of n image-label pairs and a DNN-based classifier
f(θ;x) : Rd → Rk with parameter θ, a standard scheme
to train model f is empirical risk minimization (ERM). Let
J(θ;x, y) be the loss function of θ with input x and one-hot
label y. Usually, J can be KL divergence, i.e.,

J(θ;x, y) = KL(f(θ;x)∥y).

a) Original clean samples

b) Adversarially perturbed samples

c) Corrupted samples

Figure 1: Comparison of our generated perturbed samples
and the original clean samples.

The objective of ERM on training set D can be formulated
as follows:

ERM(D) = argmin
θ∈Θ

E(x,y)∼D[J(θ;x, y)],

where Θ is the parameter space. Suppose there is a robust-
ness metric R(f, θ) and a larger value indicates a more ro-
bust classifier f with parameter θ, our goal is to develop
a data-centric algorithm A such that R (f,ERM(A(D)))
can be maximized and |A(D)| is not greater than |D|, where
A(D) is the enhanced dataset used to train robust models.
We will give the definition of R(f, θ) in Sec. 4.

Our Data-centric Algorithm
For a DNN model, to achieve optimal performance in the
testing phase, the testing set should follow the same data
distribution as our training set. However, numerous works
have shown that maliciously perturbed data and benign data
come from different distributions, which result in poor per-
formance of DNNs under attack (Song et al. 2017; Saman-
gouei, Kabkab, and Chellappa 2018). This inspires us that
our training set should also contain perturbed samples drawn
from the corresponding distribution.

In summary, our data-centric algorithm A can be de-
scribed as follows. We randomly split the original train-
ing set D into three parts D1, D2, and D3 in a ratio of
α1 : α2 : α3. For D1, we keep the original samples un-
changed; for D2, we adversarially perturb each sample; for
D3, we apply a random kind of common corruption to each
sample. Finally, ∪3

i=1Di is our optimized training set.
Next, we introduce our technical details about adversarial

perturbations and common corruptions.
Adversarial perturbation. A successful data-centric al-

gorithm should be a plug and play approach that works well
for any model f . Therefore, the generated adversarial per-
turbations should be transferable, which means they can fool

https://https-deeplearning-ai.github.io/data-centric-comp/


any unknown models that perform the same task. In general,
the process of generating adversarial perturbations can be
formulated as follows1:

δi+1 = Projϵ (δi + α · sign(∇δiJ(θ;x+ δi, y))) ,

where δ0 is a randomly initialized perturbation and Projϵ(·)
projects the current δi into the lp norm ball with radius ϵ.
There are many effective techniques in the literature to en-
hance the transferability of adversarial examples, e.g.,
• Momentum update (Dong et al. 2018), which integrates a

momentum term into the calculation of gradients to sta-
bilize update directions and avoid poor local optima:

gi = µ · gi−1 +
∇δiJ(θ;x+ δi, y)

∥∇δiJ(θ;x+ δi, y)∥1
,

δi+1 = Projϵ(δi + α · sign(gi)).
(1)

• Gradient smoothing (Dong et al. 2019), which applies
Gaussian smoothing to the gradients to weaken their cor-
relation with a particular model:

δi+1 = Projϵ(δi + α · sign(
W ∗ ∇δiJ(θ;x+ δi, y))),

(2)

where W is the Gaussian kernel.
• Input diversification (Xie et al. 2019b), which applies

random transformations to the input images at each it-
eration that can be seen as a special kind of data augmen-
tation to avoid overfitting:

δi+1 = Projϵ(δi + α · sign(
∇δiJ(θ;T (x+ δi, p), y))),

(3)

where T (x+ δi, p) is the randomly transformed sample.
• Logit loss (Zhao, Liu, and Larson 2021), which can avoid

the vanishing gradient problem caused by cross entropy
loss:

J(θ;x, y) = −zt,

t = argmax
i

yi.
(4)

where z is the output of the logit layer.
• Model ensemble (Dong et al. 2018), which fuses the log-

its of multiple models together to get the final output:

Zensemble =
1

|F |
∑
f∈F

zf (5)

where F is the model set, zf is the logit of model f and
|F | is the cardinality of F .

Following (Zhao, Liu, and Larson 2021), we combine
(1) ∼ (5) together to generate highly transferable adversarial
perturbations. The iterative formulas are as follows:

δi = T (x+ δi, p)− x,

J(θF ;x+ δi, y) = −Zt
ensemble,

gi = µ · gi−1 +
∇δiJ(θF ;x+ δi, y)

∥∇δiJ(θF ;x+ δi, y∥1
,

δi+1 = Projϵ(δi + α · sign(W ∗ gi)).

(6)

1Note that this is the formulation of l∞-bounded PGD at-
tack. For l2-bounded PGD attack, we should replace sign(·) with
norm(·), where norm(v) = v

∥v∥2
.

To further obtain more diverse perturbation patterns, we
generate both l2-bounded and l∞-bounded perturbations for
each sample. Next, we add them together to get the final
adversarial perturbation. In Fig. 1b, we show some instances
of our generated adversarial examples.

Common corruption. Using the imgaug library (Jung
et al. 2020), we implement 14 kinds of common corruptions
including rain, snow, frost, Gaussian blur, Gaussian noise,
elastic transformation, etc. For each sample in D3, we ran-
domly select one of the 14 methods to corrupt it. In Fig. 1c,
we show some instances of our corrupted samples.

4. Experiments
In this section, we will empirically demonstrate the effec-
tiveness of our designed data-centric algorithm A, which is
proposed for participating in the data-centric robust learning
competition hosted by Alibaba Group and Tsinghua Univer-
sity as one of the series of AI Security Challengers Program
(url). We first introduce this competition as well as the ro-
bustness metric to evaluate an algorithm.

Data-Centric Robust Learning Competition
In this competition, we need to optimize the CIFAR-10
dataset using our data-centric algorithm A. Based on this
dataset, we are able to train some robust models. To eval-
uate the robustness of these models, the competition con-
structed a private testing set P = {Pori,Padv,Pcor} based
on CIFAR-10. P consists of three subdatasets which contain
clean samples, adversarial examples and corrupted samples
respectively2. For a particular model f with parameter θ, its
robustness R(f, θ) is defined as the classification rate on P ,
which can be formulated as follows3:

R(f, θ) =
1

|P|

 ∑
Pi∈P

1

|Pi|
∑

(xi,yi)∈Pi

1(f(θ, xi) = yi)

 .

(7)
This competition consists of two stages. In each stage, we

are given several DNN models and we need to train these
models on our optimized dataset. The trained models are
subsequently submitted to the competition platform. Finally,
our score is calculated as the mean of R for each model
based on Eq. (7). In the first stage, the models to be trained
are ResNet50 (He et al. 2016a) and DenseNet121 (Huang
et al. 2017). The score of the baseline dataset is 75.23. We
came third out of 3691 participants with a score of 98.96. In
the second stage, the models to be trained are WideResNet
(Zagoruyko and Komodakis 2016) and PreactResNet18 (He
et al. 2016b). The models are evaluated on a different private
testing set and the baseline is 63.31. We came fourth out of
50 participants with a score of 85.19.

Comparison With the Baseline
Exploiting data-centric AI for model robustness is a brand
new idea with no competitive method in the literature.

2The clean samples in P are not necessary selected from the
original CIFAR-10 dataset.

3Here, the label y and the output of f are all scalars representing
the class indexs, which are different from the definitions in Seq. 3.

https://tianchi.aliyun.com/competition/entrance/531939/introduction


Table 1: Performance comparison of models trained on original CIFAR-10 and our optimized CIFAR-10. ACC(·) stands for
the classification rate on some subdataset and R(f, θ) stands for the robustness score of model f with parameter θ.

Performances of models trained on original CIFAR-10 (%)
ResNet50 WideResNet PreactResNet18 DenseNet121 VGG16 MobileNetV2

ACC(Pori) 98.64 99.28 98.66 98.63 98.66 90.91
ACC(Padv) 32.73 34.28 33.75 31.84 37.17 43.25
ACC(Pcor) 55.12 61.32 62.78 56.71 64.17 56.67
R(f, θ) 62.16 64.96 65.06 62.39 66.67 63.61

Performances of models trained on optimized CIFAR-10 (%)
ResNet50 WideResNet PreactResNet18 DenseNet121 VGG16 MobileNetV2

ACC(Pori) 92.75 96.30 93.30 95.04 94.94 84.74
ACC(Padv) 60.52 62.42 58.34 61.50 58.86 46.99
ACC(Pcor) 83.36 89.58 83.93 85.54 86.93 72.58
R(f, θ) 78.88 82.77 78.52 80.69 80.24 68.10

Therefore, our baseline algorithm for comparison is simply
the identity map I, i.e., the original CIFAR-10 is the base-
line dataset to train non-robust models. Note that the num-
ber of training samples contained in our optimized dataset
should not exceed 50,000 during the competition, which is
less than the total number of samples in CIFAR-10 (includes
training set and testing set). As what we did in the competi-
tion, we randomly remove 10,000 samples from CIFAR-10
before our experiments.

Using the proposed algorithm A described in Sec. 3, we
generate our optimized training set based on the original
CIFAR-10. In practice, the split ratio α is set as 0 : 1 : 4,
which yields the best performance in the competition. This
ratio indicates that there are no clean samples in our opti-
mized training set. This is because the proportion of clean
samples in the private testing set P is relatively small (4.55%
in the second stage), and also, the perturbed samples contain
some information about the distribution of clean samples.
We generate transferable adversarial examples through 300
iterations. The hyper-parameters setting in the experiments
is: ϵ = 8, α = 2/255 for l∞-bounded perturbations and
ϵ = 1.0, α = 0.025 for l2-bounded perturbations. Other
hyper-parameters are consistent with those in (Zhao, Liu,
and Larson 2021). To implement model ensemble, we select
5 common DNN models, including ResNet50, WideResNet,
DenseNet121, VGG16 (Simonyan and Zisserman 2014) and
MobileNetV2 (Sandler et al. 2018). Among them, ResNet50
and DenseNet121 have been demonstrated to be the best
choices to generate transferable adversarial examples.

We trained 6 different models on both the original CIFAR-
10 and our optimized CIFAR-10. The private testing sets of
the competition have been released. Therefore, we simply
use the testing set of the second stage to evaluate the perfor-
mances of our trained models. The classification rates ACC
on three subdatasets and the robustness score R(f, θ) of each
model are shown in Tab. 1. The models trained on our opti-
mized dataset show significant improvements in terms of ro-
bustness, and the classification rates on both adversarial and
corrupt samples increase by more than 20%, which proves

the effectiveness and general applicability of our algorithm.
In practice, we can trade off the performance loss on clean
samples and the robustness to perturbations by adjusting the
split ratio α.

Limitation and Future Work
Although our algorithm effectively improves the robustness
of models to adversarial and corrupted samples, the magni-
tude of improvements are not comparable to current state-of-
the-art models-centric techniques. On one hand, our study is
based on a more challenging setting — both adversarial ex-
amples and corrupted samples exist in the testing set. On the
other hand, when the number of samples in the training set
cannot be increased, it’s difficult to carry enough informa-
tion about the distributions of clean samples and perturbed
samples. While only limited performance gains can be ob-
tained by optimizing the datasets alone, it will be interesting
to explore whether further breakthroughs can be achieved
by combining data-centric approaches with state-of-the-art
model-centric approaches, which is a promising future work.

5. Conclusion
In this paper, we show the possibility of constructing a high-
quality dataset for model robustness by presenting a novel
data-centric algorithm. Our competition and experimental
results demonstrate the effectiveness and general applicabil-
ity of the algorithm. Data-centric AI is a promising approach
in the field of model robustness, and we believe that more
encouraging results can be achieved by combining it with
existing state-of-the-art model-centric techniques.
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