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Abstract
The data-centric machine learning aims to find effective ways
to build appropriate datasets which can improve the perfor-
mance of AI models. In this paper, we mainly focus on de-
signing an efficient data-centric scheme to improve robust-
ness for models towards unforeseen malicious inputs in the
black-box test settings. Specifically, we introduce a noised-
based data augmentation method which is composed of Gaus-
sian Noise, Salt-and-Pepper noise, and the PGD adversarial
perturbations. The proposed method is built on lightweight al-
gorithms and proved highly effective based on comprehensive
evaluations, showing good efficiency on computation cost
and robustness enhancement. In addition, we share our in-
sights about the data-centric robust machine learning gained
from our experiments.

Introduction
With deep neural networks (DNNs) being deployed in more
and more fields, how to improve the performance of DNN
models has attracted many researchers. A lot of efforts have
been made to construct powerful models (Simonyan and Zis-
serman 2015; He et al. 2016a,b; Zagoruyko and Komodakis
2016) that can run accurately on different data from distinct
tasks, and even outperform human’s perception systems.
However, the data, which can be regarded as “food” for the
artificial intelligence (AI) models, has not been sufficiently
investigated as well as the model structures or the training
functions. Recently, such status brings concerns from some
academics and people start to research about the data and
call it the data-centric machine learning (Miranda 2021).

As illustrated in Fig. 1, the data-centric machine learn-
ing is mainly focused on the design of data. The researchers
are usually asked to construct elaborately designed datasets
for the fixed model structure and loss functions and improve
the performance of the models. The data-centric machine
learning has many differences with the model-centric ma-
chine learning, turning researchers’ eyes on data augmenta-
tion (Shorten and Khoshgoftaar 2019) and feature engineer-
ing (Dong and Liu 2018).

In this paper, we mainly focus on how to design a dataset
that can give robustness for the trained models towards any
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Figure 1: Data-centric machine learning mainly focuses on
the design of the dataset rather than model structure or loss
function.

potential malicious inputs, i.e., the data-centric robust ma-
chine learning in the black-box settings. Besides, we want to
keep our solution as simple as possible to achieve efficiency
in practice. We first share our analysis about this topic as
follows: in general, a data-centric problem can be solved by
multiple data augmentation techniques, such as image noise,
knowledge distillation with soft label (Hinton, Vinyals, and
Dean 2015), augmentation by affine transformations. How-
ever, for knowledge distillation with soft label, its reliabil-
ity has a dependence on the performance of the teacher
model while we find it hard to choose (or train) an appro-
priate teacher for robust learning in the black-box settings.
In addition, defensive distillation (Papernot et al. 2016) is
proven to be vulnerable to specific adversarial attacks (Car-
lini and Wagner 2017). For affine transformation, we argue
that this method tends to empower the networks with robust-
ness against angle transformation, partial information, etc.,
which are more likely to occur in the physical world. In this
paper, we mainly focus on the digital world where image
corruption and adversarial examples are more common and
dangerous while affine transformations can hardly provide
help on that. Consequently, we believe a more effective and
efficient solution is using hard-label data with noise-based
data augmentation including conventional image noise and
adversarial perturbations (Goodfellow, Shlens, and Szegedy
2015; Madry et al. 2018), forcing the model to learn robust
features from corrupted and adversarial images.

Another important and changeable component in data-
centric problems is the settings of the (commonly-used) op-
timizer, especially for the learning rate scheduler. In our
method, we choose the cosine annealing schedule with warm



restart (Loshchilov and Hutter 2017). Compared with other
schemes and vanilla cosine annealing, this scheduler scans a
wider range of learning rate values, provides a better gener-
alization and accuracy, and accelerates the training process
of models. In a nutshell, our solution is composed of noise-
based data augmentation and cosine annealing learning rate
scheduler with warm restart.

We summarize our contributions as follows:
• We introduce a noise-based method to construct a com-

prehensive training dataset to empower the trained model
with strong robustness without dependence on any ad-
ditional training process or loss function. In addition,
this scheme is composed of lightweight algorithms and
achieves efficiency in terms of effectiveness and compu-
tation cost.

• Specifically, we evaluate the performance of different im-
age noise and adversarial perturbations for data augmen-
tation comprehensively. Based on the concrete quantita-
tive results, we choose Gaussian Noise, Salt-and-Pepper
noise, and the PGD perturbations as integrated solutions.

• Our method shows good effectiveness on evaluations and
ranks 8-th place out of 3, 691 teams on AAAI2022 Secu-
rity AI Challenger1: Data Centric Robust Learning on
ML models, surpassing the baseline by 20.03% in terms
of final score.

Methodology
Noise-based Data Augmentation
Here we highlight four kinds of image noise for data aug-
mentation, including two kinds of conventional image noise
(Salt & Pepper, Gaussian) and two kinds of adversarial per-
turbations (FGSM, PGD).

Salt and Pepper noise. In a corruption image, the
Salt&Pepper noise is presented as pure white or black pixel
with discrete distribution, which is often caused by sharp
and sudden disturbances in the image signal. We argue that
it also serves as random masks and makes models learn par-
tial features for robustness.

Gaussian Noise. Adding Gaussian noise is a widely-used
method for data augmentation. The probability density func-
tion of Gaussian noise follows the normal distribution (i.e,
Gaussian distribution).

FGSM. The Fast Gradient Sign Method (FGSM) (Good-
fellow, Shlens, and Szegedy 2015) is a single-step gradient-
based adversarial attacks scheme, which calculates the gra-
dient sign of output loss from a white-box model and then
computes (usually l∞-norm) bounded adversarial perturba-
tions as we demonstrate as follows:

xadv = x+ η, η = ϵ sign (∇xJ(θ, x, y)) , (1)
where J represents the loss function of the white-box model,
ϵ is the perturbation size, and y is the ground-truth label of
the clean image x.

PGD. The Projected Gradient Descent (PGD) (Madry
et al. 2018) is a strong iterative adversarial attack which gen-
erates adversarial examples by:

xt+1 = Πx+S
(
xt + α sign (∇xJ(θ, x, y))

)
, (2)

1https://tianchi.aliyun.com/competition/entrance/531939/information
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Figure 2: Illustration of “adversarial under-fitting” phe-
nomenon. The darker blue represents the stronger attack
ability of an adversarial example. The green region repre-
sents a range where the adversarial example can provide
comprehensively useful information as training data. Due to
the single-step design, the example generated by FGSM is
likely to locate on a point with weaker adversarial strength,
meanwhile losses more clean features.

where α is the perturbation size per-step, and Πx+S repre-
sents the similarity restriction which is usually a clip func-
tion in practice.

It can be noted that both FGSM and PGD are calcu-
lated on a white-box model, which means a trained model
is needed when we construct the new data from the origi-
nal ones. In our method, we first train the networks on the
original clean dataset, then we generate adversarial exam-
ples (FGSM, PGD) on them. This leads to a little difference
from recent adversarial training (Pang et al. 2021) where ad-
versarial examples are calculated in the training process si-
multaneously, while our method needs to train a clean model
in the first stage due to the specific requirements of data-
centric scenario.

Although we cannot modify training process like adver-
sarial training, we argue that the choice of adversarial al-
gorithms in data-centric machine learning is the same as
what is widely adopted in adversarial training. In adversar-
ial training, a majority of researchers use PGD (Pang et al.
2021; Zhang et al. 2019; Rice, Wong, and Kolter 2020) to
generate adversarial examples, since PGD is proven to have
stronger attack strength and unlikely to cause label leak-
ing (Madry et al. 2018). Due to the single-step design, the
attack strength of FGSM is usually weaker than PGD in the
same perturbation size, and it also tends to create adversarial
examples with more conspicuous changes. This means that
when it comes to training models straightly on adversarial
examples, FGSM may drive the model far from an optimal
point where the model can handle different inputs including
clean, corrupted, and adversarial images. As Fig. 2 shows,
compared with FGSM, PGD is more likely to have stronger
adversarial strength and maintain more clean features. We
leave a more comprehensive investigation about this in the
experiments.

Cosine Annealing and Warm Restart
Cosine annealing combined with warm restart (Loshchilov
and Hutter 2017) is a popular and effective technique to
solve optimization problems which accelerates the conver-
gence and avoids ill-condition problems. Specifically, as
demonstrated in Alg. 1, this scheme sets the learning rate
of the optimizer according to the cosine annealing curve
and restart after some iterations. In our method, we leverage
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Figure 3: Images from the official test data of AAAI2022 Security AI Challenger. The bar charts below each image represent the
softmax outputs from the original model (trained on the clean dataset) and the robust model (trained on our augmented dataset).
The incorrect results are colored red. The softmax outputs show that our method enhances the robustness of the networks. And
the enhanced model can give correct results with high confidence.

Algorithm 1: SGD with CosineAnnealingWarmRestarts
Input: Parameters θt; minimum learning rate γmin; maxi-
mum learning rate γmax; loss function Φ; weight decay λ;
momentum µ; dampening τ ; the number of epochs since the
last restart Tcur; the number of epochs between two warm
restarts T .
Output: Parameters θt+1.

1: CosineAnnealingWarmRestarts Schedule.
2: if Tcur == T then
3: γ = γmin;
4: else if Tcur == 0 then
5: γ = γmax;
6: else
7: γ = γmin + 1

2 (γmax − γmin)(1 + cos (Tcur

T π));
8: end if
9: Stochastic Gradient Descent.

10: gt+1 ← ∇θΦ(θt)
11: gt+1 ← gt+1 + λθt
12: gt+1 ← µgt + (1− τ)gt+1

13: θt+1 ← θt − γgt+1

14: return θt+1

this technique to get a powerful Stochastic Gradient Descent
(SGD) optimizer.

Experiments
Experimental Setting
Implementation details. In our experiments, we con-
struct the training data with four noise-based augmen-
tation methods, i.e., Gaussian noise, Salt&Pepper noise,
FGSM (Goodfellow, Shlens, and Szegedy 2015) perturba-
tions, and PGD (Madry et al. 2018) perturbations. For Gaus-
sian noise, we set mean equals 0 and variance equals 0.005.
For Salt&Pepper noise, we set the noise ratio to 40%. For
FGSM, we set perturbation size to 8/255, 12/255, 16/255
respectively for the comparison study. For PGD, we choose
the maximum perturbation equals 8/255, 12/255, 16/255,

epochs equal to 20, and step size equals 0.4/255, 0.6/255,
0.8/255 respectively. All these augmentations will be con-
ducted upon the CIFAR10 (Krizhevsky, Hinton et al. 2009)
training data, which contains 50,000 32 × 32 color images
from 10 categories and each category have 5,000 training
images.

Models. Following the semi-finals of AAAI2022 Security
AI Challenger2 competition, we use PreActResnet18 (He
et al. 2016b) and WideResnet (Zagoruyko and Komodakis
2016) as the test model.

Test dataset. We choose the official test dataset of
AAAI2022 Security AI Challenger competition, which is a
mixed dataset containing clean images, corruption images,
and adversarial images. All of these images are extracted
or generated from the original CIFAR10 test set. The cor-
ruption image set contains 18 types of corruption, and the
adversarial image set is generated from 3 different settings
by model-ensemble (Dong et al. 2018). We visualize them
in Fig. 3.

Optimizer and scheduler. In our experiments, we use
a SGD (Robbins 2007) optimizer with the CosineAnneal-
ingWarmRestarts3 scheduler to train the test model. Specif-
ically, for SGD, we set the learning rate equals 0.01, mo-
mentum equals 0.9, and weight decay equals 5× 10−4. For
the scheduler, we set T0 = 3, Tmult = 2, and the minimum
learning rate equals 1 × 10−5. In addition, we set the batch
size equals 128 and training epochs equal 185.

Comparison Study
Evaluations of different methods. Tab. 1 shows the com-
parison study of different noise-based augmentation meth-
ods. In this experiment, we evaluate the model trained on the
dataset which contains 50, 000 images constructed from the
same original data with a single augmentation method, e.g.,
the GS represents the training dataset containing 50, 000

2https://tianchi.aliyun.com/competition/entrance/531939/information
3https://pytorch.org/docs/master/generated/torch.optim.lr scheduler.C

osineAnnealingWarmRestarts.html



Test Data Model CL GS S&P FGSM8 FGSM12 FGSM16 PGD8 PGD12 PGD16

Clean PreActResnet18 0.9922 0.9391 0.9643 0.3888 0.2993 0.1869 0.7302 0.6121 0.4579
Images WideResnet 0.9923 0.9350 0.9751 0.4518 0.2772 0.2388 0.8776 0.7515 0.5910

Corrupted PreActResnet18 0.6353 0.6971 0.7162 0.2354 0.1981 0.1419 0.4410 0.4180 0.3818
Images WideResnet 0.6108 0.6982 0.7265 0.3124 0.2143 0.1638 0.5986 0.4961 0.4315

Adversarial PreActResnet18 0.3719 0.6433 0.5411 0.2758 0.2149 0.1591 0.7860 0.7500 0.6922
Images WideResnet 0.3797 0.6506 0.5329 0.3455 0.2387 0.1984 0.8052 0.7754 0.7211
Avg. Final Score 0.6637 0.7606 0.7427 0.3350 0.2404 0.1815 0.7064 0.6338 0.5459

Table 1: Comparison of noise-based data augmentation methods. Each column represents the training data (50, 000 images)
augmented by a single method. We highlight the top-3 for each kind of test data and the final score. Notations CL: clean
images. GS: images with Gaussian noise. S&P: images with Salt&Pepper noise. The subscript number (8, 12, 16) represents
the perturbation size with 8/255, 12/255, 16/255 for FGSM and PGD, respectively. We will use the same notations hereafter.

images only with Gaussian Noise and the FGSM12 repre-
sents the training dataset containing 50, 000 images only
with FGSM perturbations with perturbation size = 12/255.
As shown in Tab. 1, Gaussian noise, Salt&Pepper noise, and
the PGD perturbations are appropriate methods for robust-
ness enhancement in terms of the final score. Salt&Pepper
noise shows superior effectiveness for corrupted images and
the PGD perturbations have outstanding performance on the
robustness towards adversarial images. Gaussian noise has
a relatively balanced accuracy for each kind of image set,
leading to its triumph on the final score.

Another non-negligible fact is that FGSM is not compet-
itive to PGD for data-centric robust machine learning in the
same perturbation size and this verifies our analysis in Fig 2.
We also argue that FGSM in smaller perturbation sizes may
be more appropriate for data augmentation.

Evaluations of mixed dataset. According to the perfor-
mance of different noise-based augmentation methods in
Tab. 1, we construct 10 mixed datasets with different pro-
portions of the noise methods as shown in Tab. 2:

Mix. 1 2 3 4 5 6 7 8 9 10
Clean - - - - - - - 10k - 10k

GS 10k 10k 10k 10k 10k 10k 10k 10k 10k 10k
S&P 10k 10k 10k 10k 10k 10k 10k 10k 10k 10k

FGSM8 30k - - - - - 10k 10k - -
FGSM12 - 30k - - - - 10k 10k - -
FGSM16 - - 30k - - - 10k - - -

PGD8 - - - 30k - - - - 10k 10k
PGD12 - - - - 30k - - - 10k 10k
PGD16 - - - - - 30k - - 10k -

Table 2: Contents in 10 different mixed datasets.

As shown in Fig. 4(a), an obvious tendency is that the
datasets mixed with PGD perturbations, Gaussian noise, and
Salt&Pepper noise will reach a balance between robustness
and accuracy as they all have relatively high final scores,
among which the dataset with PGD8/255 achieves the best
performance.

Ablation Study
Fig. 4(b) shows the ablation study of the warm restarts de-
sign. In this experiment, we choose three mixed datasets
which have the highest final scores in our evaluations and
train the test model by cosine annealing scheduler without
warm restarts. As illustrated in Fig. 4(b), the warm restarts
design can improve the model performance by 2% ∼ 3%,
which is a significant progress.
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Figure 4: Notations are introduced in Tab. 2. (a) shows the fi-
nal scores of different mixed datasets, the datasets with PGD
are colored darker blue. (b) represents the final scores of the
top-3 datasets in Fig. 4(a) with and without (bars with light
grey) warm restarts design (but all have cosine annealing),
showing that warm restarts leads to about 2% ∼ 3% im-
provement.

Conclusions
• An appropriate scheme to generate adversarial examples

is crucial. We argue that the samples generated by iter-
ative algorithms (i.e., PGD) with a relatively small size
of perturbations can maintain considerable clean features
and avoid insufficiency of adversarial strength.

• Noise-based augmentation can perform better in data-
centric settings compared with soft labels or affine trans-
formations. And the appropriate noise type and hyper-
parameters can ensure that the model is valid for both
clean and perturbed images.

• CosineAnnealingWarmRestarts scheduler can avoid
overfitting of the neural networks on limited data
by restarting the learning rate, and thus enhance the
generalization of the model. This method will lead to
considerable improvements when it is combined with
noise-based data augmentation.
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